
Área de Atuação 2010/2011:

Área de Atuação 2012:

Culturas mais Importantes:

Norte do ES e Sul da Bahia: Café Conillon, Mamão, Melancia, Banana, Cana de Açúcar, Maracujá e Cacau

Região Central do ES: Café Conillon, Café Arábica e HF

Região Sul do ES: Abacaxi, Cana de Açúcar e Café Conillon

Região de Campos dos Goytacazes - RJ: Cana de Açúcar

Zona da Mata e Leste de Minas: Café Arábica e HF

<u>Índice</u>

- 1 Introdução
- 2 Objetivos
- 3 Material e Métodos
- 4 Resultados e Discussão
- 5 Conclusão
- 6 Referencias Bibliográficas

Desuniformidade na florada:

- Implantação da lavoura (Adensamento).
- Manejo (Irrigação e Fertirrigação).
- Clima (elevadas altitudes, precipitação pluviais).

Maneira mais indicada de resolver :

- Manejo correto da irrigação e stress hídrico.
- Desenvolvimento de novas variedades.
- Colheita seletiva?
- E uso de substâncias reguladoras da maturação.

Objetivos

Testar e avaliar diferentes produtos e sua influência na antecipação e uniformidade da maturação do cafeeiro e com isso possibilitar a programação e antecipação da colheita, avaliar a influência destes produtos na qualidade da bebida.

- Fazenda Dona Neném, (proprietário Eduardo Pinheiro Campos),
 localizada no município de Presidente Olegário MG.
- Variedade: Catuaí 144 (café plantado em 2005)

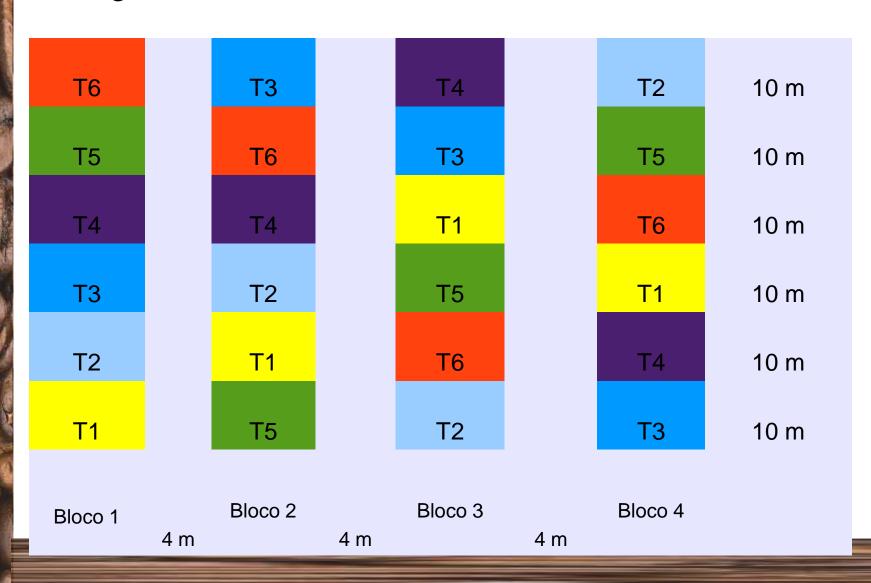

Trat.	Nome Comercial	Dosagem (Lt/Kg.p.c.ha ⁻¹)	Adjuvante (%)
1	-	-	-
2	Ethrel 240	1	0,0005
3	K-bomber	4,0	0,0005
4	K-bomber + Spray Dunger	4,0 + 1,0	0,0005
5	Agrik + Subs. Húmicas	2,5	0,0005
6	Codamax	0,4	0,0005

Tabela 1 - Descrição dos tratamentos com os respectivos produtos e dosagens. Presidente Olegário, MG, 2011.

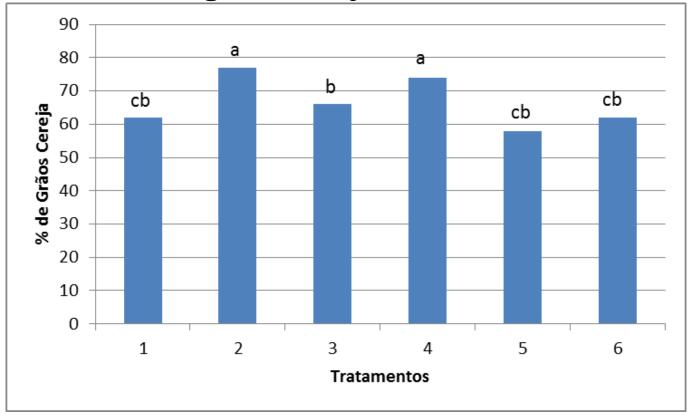
• O delineamento experimental foi o de blocos casualizados com 6 tratamentos e 4 repetições. Cada bloco corresponde à linha de café. Cada parcela corresponde a 10 metros lineares com espaçamento entre plantas de 0,5 m, cada parcela contém 20 plantas (figura 1).

Figura 1: Croqui de aplicação dos tratamentos. Presidente Olegário, MG, 2011.

• PARÂMETROS AVALIADOS:

- Porcentagem de frutos no estádio verde, verde cana, cereja e seco, no momento da aplicação (20/04/11) e na colheita (30/05/2011).
- Análise sensorial da bebida (Prova de xícara avaliação de .A avaliação foi realizada por Renato Souza (05/07/2011).

<u>Índice</u>


- 1 Introdução
- 2 Objetivos
- 3 Materiais e Métodos
- 4 Resultados e Discussão
- 5 Conclusão
- 6 Referencias Bibliográficas

Resultados e Discussão

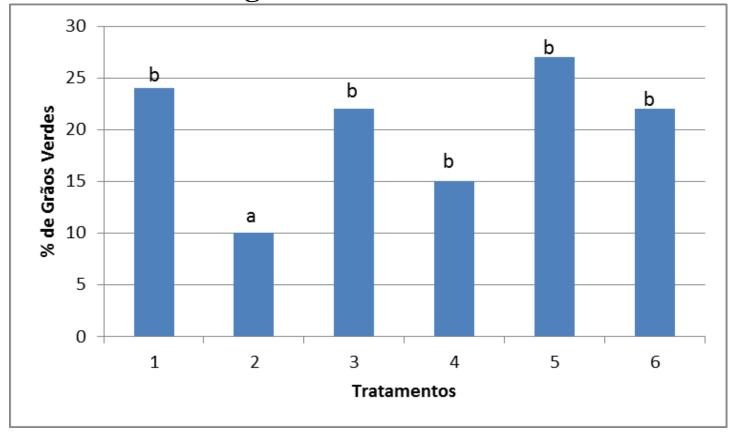
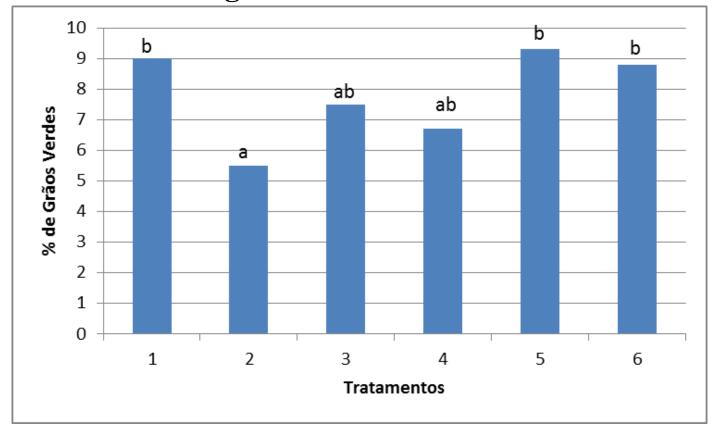

Estágio de Maturação	%
Verde	45,5
Verde Cana	22,66
Cereja	27,3
Seco	4,54

Tabela 2. Estágio de maturação dos grãos antes da aplicação dos maturadores . Presidente Olegário; MG,2011.


Figura 2 – Índice de maturação de grãos de café, considerando % de grãos cerejas.

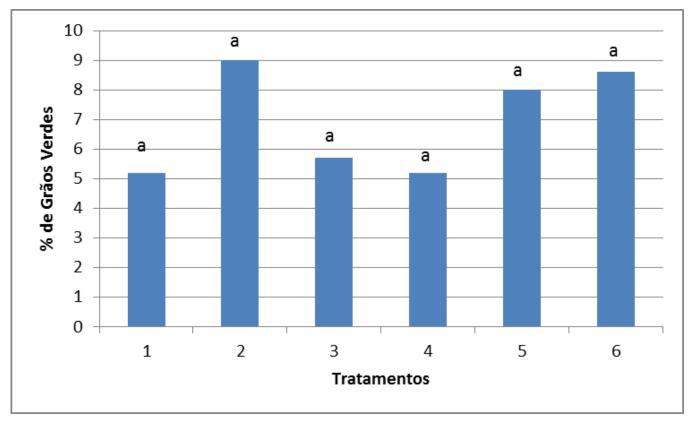

Figura 3 – Índice de maturação de grãos de café, considerando % de grãos Verdes.

Figura 4 – Índice de maturação de grãos de café, considerando % de grãos Verde Cana.

Figura 5 – Índice de maturação de grãos de café, considerando % de grãos Secos

Tabela de Classificação na Prova de Xícara

COFFEE CUPPING DATA SHEET Sample # Fragance/Aroma Uniformity Body Total Score Clean Cup Sweetness Defects (subtract) Taint=2 Fault=4 #Cups Intensity Roast Level of Sample Intensity ZERO -ZERO -ZERO -Final Score

Tabela:Aroma, Uniformidade, Xícara limpa, Doçura, Sabor, Acidez, Corpo, Sabor Residual, Balanço e Nota Final.

Competição de prova de xícaras

< 65 péssimo

65 a 72 Bom

73 a 79 muito bom

80 a 88 especiais

89 excelente

Tabela 3 – Classificação obtida através da Prova de Xícara. Presidente Olegário, MG, 2011.

CLASSIFICAÇÃO: PROVA DE XÍCARA

	Trat.01	Trat.02	Trat.03	Trat.04	Trat.05	Trat.06
Pontos	78	77	77	76	74	75
Classificação	Dura	Dura	Dura	Dura	Dura	Dura

Referências Bibliográficas

- CARVALHO, G. R. *et al.*, Eficiência do ethephon na uniformização e antecipação da maturação de frutos de cafeeiro (*Coffea arabica*) e na qualidade da bebida. **Ciênc. agrotec.**, Lavras. V.27, n.1, p.98-106, jan./fev., 2003.
- CARVALHO, G. R.; *et al.*. Colheita mecânica do café: uso do Ethrel no rendimento da derriça como forma de redução de custo. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRA, 27., 2001, Uberaba. **Resumos expandidos**... Uberaba: SDR/ PROCAFE/PNFC, 2001. p. 103-105.
- CARVALHO, V.D. de; CHALFOUN, S.M. Aspectos qualitativos do café. **Informe Agropecuário**, Belo Horizonte, v.11, n.126, p.79-92, 1985.
- CARVALHO, A. *et al.* Ocorrência dos principais defeitos do café em várias fases de maturação dos frutos. **Bragantia**. v.29,n.20,p. 207-220,jun.,1970.
- CHAGAS, S. J. de R. Caracterização química e qualitativa de cafés de alguns municípios de três regiões produtoras de Minas Gerais. 1994. 83 p. Dissertação (Mestrado em Ciência dos Alimentos) UFLA, Lavras,1994.
- CONAB, Companhia Nacional de Abastecimento. **Acompanhamento da Safra Brasileira Café Safra 2009, quarta estimativa, dezembro/2009** Brasília: 2010.Disponível em: http://www.conab.gov.br >. Acesso em: 28 abril. 2011>. Acesso em 20/07/2011
- DRAETTA, L.S.; LIMA, D.C.Isolamento e caracterização das polifoneloxidases do café. **Coletânea do Instituto de tecnologia de alimentos**. Campinas, v.7, p. 13-28, jun.,1976.
- GARRUTI, R. S.; GOMES, A. G. Influência do estádio de maturação sobre a qualidade da bebida do café na região do Vale do Paraíba. **Bragantia**, Campinas, v. 20, p. 989-995, 1961.
- GHERARDI, B. Efeito da relação entre a soma térmica e a eficiencia do uso de maturadores em café. Informativo Biolchim.

- NAKAYAMA, F.T. *et al.* Avaliação do momento de aplicação de Ethephon sobre a qualidade e maturação dos frutos de café cultivar Mundo Novo. **Revista Omnia Exatas**, v.2, n.1, p. 7-15, jan-jun.,2009.
- PIMENTA, C.J. Qualidade do café (*Coffea arabica* L.) originado de diferentes frutos colhidos em quatro estagios de maturação. 1995.94 p. Dissertação (Mestrado em Ciencias dos alimentos) UFLA, Lavras,1995.
- RENA, A.B. Maturação uniforme. Revista Cultivar Grandes Culturas, n.28, mai.,2001.
- SCUDELER, F.; RAETANO C. G.; ARAÚJO, D.; BAUER, F. C. Cobertura da pulverização e maturação de frutos do cafeeiro com Etephon em diferentes condições operacionais. **Bragantia**, Campinas, v.63, n.1, p.129-139, 2004.
- SILVA, F.M. da *et al.*Uso de Ethrel na colheita mecanizada e seletiva de café arabica (*Coffea arabica*). Coffe Science. Lavras,v.4, n.2, p.178-182.2009.
- SILVA, F.M. da *et al.*ção da colheita mecanizada do café com uso do ethephon. **Coffee Science**, Lavras, v.1, n.1, p. 1-6, abr-jun.,2006.
- SILVA, J.S.; BERBERT, P.A. **Colheita, secagem e armazenagem de café**. Viçosa, MG: Aprenda Fácil, 146p. 1999.
- TEIXEIRA, A. A. Colheita, preparo, armazenamento e classificação do café. Coordenadoria de Assistência Técnica Integral, Campinas, 1979.

Uso de Fontes de Matéria Orgânica em Cafeeiros

José D. Sampaio Júnior

Fazenda

Produtor: Paulo Henrique de Farias

Município: Buritizeiros - MG

Fazenda Império

Catuai 144

	Amostra	1	2	
pH Agua		5,50	4,51	
M.O.	dag/kg	3,48	2,61	
Р	mg/dm3	32,30	2,08	
P rem	mg/L	19,31	14,05	
K	mg/dm3	324,00	8,00	
Ca	cmolc/dm3	2,59	0,06	
Mg	cmolc/dm3	1,30	0,31	
S-SO4	mg/dm3	ANS	ANS	
Al	cmolc/dm3	0,01	1,40	
H+AI	cmolc/dm3	4,32	10,27	
SB	cmolc/dm3	4,72	0,39	
CTC(e)	cmolc/dm3	4,77	1,79	
CTC(7)	cmolc/dm3	9,04	10,66	
%m		1,05	78,21	
%v		52,21	3,66	

		3	4
pH Agua		4,80	4,70
M.O.	dag/kg	2,11	2,74
P	mg/dm3	2,21	3,12
P rem	mg/L	15,56	12,90
K	mg/dm3	112,00	16,00
Ca	cmolc/dm3	0,67	0,52
Mg	cmolc/dm3	0,17	0,42
S-SO4	mg/dm3	ANS	ANS
Al	cmolc/dm3	0,50	0,90
H+AI	cmolc/dm3	7,00	7,90
SB	cmolc/dm3	1,13	0,98
CTC(e)	cmolc/dm3	1,63	1,88
CTC(7)	cmolc/dm3	8,13	8,88
%m		30,67	47,87
%v		13,90	11,04

Tratamento 3: Fulvumin – dose 6 litros por hectare

Tratamento 4: Fulvumin + Restorer – 4 + 4 litros por hectare

Testemunha

Fulvumin + Restorer

ESPELHODO Laudo de Análize: MATERIAL: SOLO LAUDO DE Benetente

EDUARDO PINHEIRO CAMPOS / OUTROS

R. MACOES UNITAS 679 - CONEGO GETULIO 38.700-146 PATOS DE MINAS MG FUME: (34)3821-6021/9875-0321 FAX: (34)3821-6021

cmol = cmolc/dml | EXTRATORES |
Res(mmolc) -> Res(cmolc) x 10+Aqua Quente = B

ARS - Analise Nac Solicitada (Mehlich 1:10-K, Ma, Fe, Mn, Cu, In)

RI = Não Informado(a) | Enxofre = Fosfato Monocálcico|

ALD = Absiso Limite Detecção | KCl 1M 1:10=Al,Ca,Mg

Proprietàrio: EDGABIO DINHEIRO CAMPOS FAZ. SÃO JONO GRANDE PRES. CLEGARIO MG

Laudo Expedido em: 27/01/2012

/ DESTE ESPELHO DEVERA

RESPONSÁVEL(IS)

| ESTAR ASSINADO PELOISI

AMOSTRA(S)			
Identificações:UNITHAL#	00099	. 00100	
Nametentes	01 6355 MAINO	02 6355 CIMA	
	(15-25 CM)	(15-25 CM)	
Cultura e/ou Material.w	CAFE	CAFE	
HACRONUTRIENTES			
pH (CaC12)	4.0	4,6	
p# (H20),	4, €	5,2	
pH (SMP)	5,25	5,75	
Hidrog+Alum.H+Alcmol>	9,3	5,5	
AluminioAl.,cmolw	0.9	0.2	
CalcioCacmolw	0,8	4,2	
MagnésioMgcmols	0,3	0,8	
Potassio	0,10	0,21	
Fösf (Mehlich) Fmg/dm3*	57.0	00.0	
Phaf(Besina).Pmg/dm3w	120,0	155,0	
Carbonoc.,g/dn?w	10,0	16,0	
Matéria Orgánica9w	3,1	2,8	
Some de Bases.SBcmolw	1,20	5,31	
Capac.TrocaCTC.cmclw	10,50	10,61	
Saturação Bases.V%	11,63	49,12	
RELAÇÃO			
Călcio/Magnésiow	2,7	5,4	
COMPLY ADSORVENTE			
Potassio % da.CTC*	1,0	1,5	
Cálcio da.CTC*	7, €	39,8	
Magnésio 4 da.CTCw	2,9	7,4	
Hidrogênio♥ da.CTCw	50.0	49,0	
Aluminio % da.CTCw	8,6	1,9	
MICHOMOTRIENTER			
EnxofreSmg/dm3*	SRA	ANS	
SodioNamg/dm3w	ASB	ANS	
BoroBmg/dm3w	AND	ANG	
FerroFwmg/dm3w	Afts	ARS	
ManganésMnmg/dn?s	ARS	149.0	
CobreCumg/dm3w	ARS	Afis	
ZincoZnmg/dm3w	ANS	AÑS	
GRANULOMETRIA			
Cascalho	ARS	Afts	
Areia Grossa,	ANS	ANS	
Areis Fins	ARS	ANB	
Argila4w	tsfta	adta	
#iltm%*		Adits	
Densidade Aparente*	ARB	348.0	
Densidade Real	ANB	ADIS	
Classe Texturalx			
EARC MAPA IN2 al9/2008*			
ESPECIAIS			
CobaltoCo.mg/dm3w	ANS	ANS	
Molibdênio. No. mg/dm3w		ANS	
NitrogénioN%		ASS	
C.Elétrica(15°C).µ8/cmm	ARE	ANG	
Fosf (Remanesc)mg/dm3w		ARS	
cloroclmg/dm3*	ASSII	ASS	

-Análise(s) realizada(s) com base em amostra(s) de material, acima identificada(s), entreque(s) em nossos Laboratórios-

Obrigado a Todos

José D. Sampaio Júnior

Eng. Agrônomo

MSc. Nutrição Mineral e Adubação de Plantas

(34) 9137-5864

(31) 9965-0965

zedsampaio@yahoo.com.br